
DbProf.

com

Is My SQL Statement Using
Exadata Features?

www.dbprof.com - © 2013 Jože Senegačnik 1

Jože Senegačnik
joze.senegacnik@dbprof.com

DbProf.

com

About the Speaker
Jože Senegačnik

• Owner of Dbprof d.o.o.
• First experience with Oracle Version 4.1 in 1988
• 25+ years of experience with Oracle RDBMS.
• Proud member of the OakTable Network www.oaktable.net
• Oracle ACE Director
• Co-author of the OakTable book “Expert Oracle Practices”

www.dbprof.com - © 2013 Jože Senegačnik 2

• Co-author of the OakTable book “Expert Oracle Practices”
by Apress (Jan 2010)

• VP of Slovenian OUG (SIOUG) board
• CISA – Certified IS auditor
• Blog about Oracle: http://joze-senegacnik.blogspot.com

• PPL(A) / IR(SE) – private pilot license, instrument rating
• Blog about flying: http://jsenegacnik.blogspot.com
• Blog about Building Ovens, Baking and Cooking:

http://senegacnik.blogspot.com

DbProf.

com

Exadata at Oracle HQ (OOW 2011)

www.dbprof.com - © 2013 Jože Senegačnik 3

DbProf.

com

Speed Test

• My laptop
SQL> with a as (select /*+ materialize */ 1 from dual connect by level <= 14)

2 select count(*) from a,a,a,a,a,a,a;

COUNT(*)

105413504

www.dbprof.com - © 2013 Jože Senegačnik 4

Elapsed: 00:00:04.77

• Exadata
SQL> with a as (select /*+ materialize */ 1 from dual connect by level <= 14)

2 select count(*) from a,a,a,a,a,a,a;

COUNT(*)

105413504

Elapsed: 00:00:04.48

DbProf.

com

Short Introduction to Exadata

• What is different:
– Same database (in 11gR2 almost not aware that it runs on top of

special storage)

– Fast Network (Infiniband)

– Storage Servers (not just regular disks/storage) - Exadata Storage
Server (ESS)

www.dbprof.com - © 2013 Jože Senegačnik 5

Database
11gR2

FC Disk Storage

Database
11gR2

Network
(Infiniband)

Storage Servers
(ESS)

DbProf.

com

Storage Servers – Exadata Specifics

• Synonymous terms:
– Storage Server,
– Cell Server
– Cell

• Synonyms for Exadata Operations:
– Smart Scan
– Offload

• Exadata software installed on storage cells manages smart scans

www.dbprof.com - © 2013 Jože Senegačnik 6

• Exadata software installed on storage cells manages smart scans
– Column projection
– Predicate filtering
– Storage indexes
– Simple Joins
– Function Offloading
– Smart Flash Cache
– Virtual Column Evaluation
– Hybrid Columnar Decompression
– Decryption

DbProf.

com

Architecture Benefits

• Infiniband 40Gbit/s throughput

• Fast File Creation

– Only metadata is sent to storage cells

www.dbprof.com - © 2013 Jože Senegačnik 7

• Smart scans read encrypted data

DbProf.

com

Smart Scan

• A Smart Scan is operation on disk storage represented
as a wait event at the database level

• Possible operations in a Smart Scan?
– Column Projection

– Predicate Filtering

www.dbprof.com - © 2013 Jože Senegačnik 8

– Predicate Filtering

– Storage Indexes Access

– Virtual Column Computation

– Function Offloading

– …

DbProf.

com

Smart Scan Features

• Column Projection
– Only the referenced columns are returned from smart scan

• SQL> select empno, ename from employees;
• Smart scan still has to read all table data (parsing each table row)

• Predicate Filtering
– Only the rows that match filter are returned

www.dbprof.com - © 2013 Jože Senegačnik 9

– Only the rows that match filter are returned
– Smart scan still has to read all table data (parsing each row)

• Storage Indexes
– Storage index is in-memory index built on the fly by a cell server

using WHERE clause
– Used for fast determination in which parts of the table data is

present / not present
– Can reduce the amount of data read from disk

DbProf.

com

Smart Scan Prerequisites

• Smart Scan is a part of the Query (reading data) which is executed
on the Storage Server

• For Smart Scan the following must be true:

– Full Table Scan / Fast Full Index Scan

– Direct Path Read

www.dbprof.com - © 2013 Jože Senegačnik 10

– Direct Path Read

• Direct Path Read

– physical read

– The blocks that are read are passed to the PGA and completely bypass
the SGA (buffer cache)

– No blocks are read from the Buffer Cache

DbProf.

com

'direct path read‘ (MOS note 793845.1)

• There have been changes in 11g in the heuristics to choose
between direct path reads or reads through buffer cache for serial
table scans.

• In 10g, serial table scans for "large" tables used to go through cache
(by default) which is not the case anymore. In 11g, this decision to
read via direct path or through cache is based on the size of the

www.dbprof.com - © 2013 Jože Senegačnik 11

read via direct path or through cache is based on the size of the
table, buffer cache size and various other stats.

• Direct path reads are faster than scattered reads and have less
impact on other processes because they avoid latches.

DbProf.

com

Direct Path Read Operation

• Oracle preforms direct path read in these cases:
– Parallel Queries

– For all full table / fast full index scan operations if we set hidden
parameter “_serial_direct_read” = TRUE

– Since 11g when a query is made on a “big” table

• how many table blocks are cached in the buffer cache at the

www.dbprof.com - © 2013 Jože Senegačnik 12

• how many table blocks are cached in the buffer cache at the
execution time

• Beyond certain percentage a table may not qualify for a smart scan

• Storage server decide whether a smart scan will be performed, not
the CBO

• The bigger your buffer cache, the smaller your tables will
appear

• Smaller buffer cache means more smart scans!

DbProf.

com

Direct Path Read (continued)

Conclusions from Frits Hoogland’s presentation about “About multiblock reads”

• Direct path read is decision in IO codepath of a full scan.

– NOT an optimizer decision(!)

– In Oracle version 11, a read is done buffered (through buffer cache), unless
database decides to do a direct path read

www.dbprof.com - © 2013 Jože Senegačnik 13

• Direct path read decision is influenced by

– Type of read (FTS or FFIS)

– Size of segment (> 5 * _small_table_threshold)

– Number of blocks cached (~ 50%)

• By default, direct path read (AIO – asynchronous IO) uses two I/O slots.

• ‘autotune’ scales up in steps.

• Direct path code has an ‘autotune’ function, which can add IO slots in order
to be able to use more bandwidth

• Direct path ‘autotune’ works for PX reads too!

DbProf.

com

Is Smart Scan Always Used?

• Is Smart Scan Always Used?

• NO!

• Why not?

• Smart Scan requires:
– Full Table Scan – not table access by ROWID

• Queries using index access path don’t benefit from smart scans

www.dbprof.com - © 2013 Jože Senegačnik 14

• Queries using index access path don’t benefit from smart scans

– Direct Path Read

• SQL Functions:
– Only some functions used in WHERE clause can use Smart Scan

– Will discuss later

• No smart scan on index-organized table (IOT), Clustered tables

• Smart Scan stores result in PGA thus bypassing buffer cache

DbProf.

com

Exadata and Indexes

• The Rumor:
– You should drop all your indexes on the Exadata

• The Truth:
– You will still need indexes for index access of single rows

(PK) or relatively small number of rows when access via
index is cheaper.

www.dbprof.com - © 2013 Jože Senegačnik 15

index is cheaper.
– Exadata is fast, but repetitive full scans on relatively big

tables can bring even Exadata to the knees.
– When index access is in question one should check the

amount of work performed by Smart Scans in comparison
with the amount of work performed by index access

– Dropping indexes is beneficial as they are slowing down
DML (index maintenance costs – insert, update, delete
operations)

DbProf.

com

Was A Smart Scan Done?

• We have to check SQL level “statistics” in GV$SQL

– GV$SQL.IO_CELL_OFFLOAD_ELIGIBLE_BYTES > 0 => Smart Scan
was done

• This amount of IO saved by Smart Scan can be calculated

select last_load_time, sql_id, child_number,

www.dbprof.com - © 2013 Jože Senegačnik 16

select last_load_time, sql_id, child_number,

decode (IO_CELL_OFFLOAD_ELIGIBLE_BYTES,0,'No','Yes')

Offloadable

from v$sql

where sql_text like '%&sql_text%'

order by last_load_time desc;

DbProf.

com

Storage Index Check

• Session level statistics

– “cell physical IO bytes saved by storage
index”

www.dbprof.com - © 2013 Jože Senegačnik 17

select s.name, m.value

from v$statname s, v$mystat m

where name like ('%storage%')

and s.statistic# = m.statistic#

DbProf.

com

Enabling/Disabling Exadata Features

• Column Projection/Predicate Filtering
– Enable
– alter session set cell_offload_processing = true
– Disable
– alter session set cell_offload_processing = false

www.dbprof.com - © 2013 Jože Senegačnik 18

– alter session set cell_offload_processing = false

• Storage Indexes
– Enable
– alter session set "_kcfis_storageidx_disabled"=false
– Disable
– alter session set "_kcfis_storageidx_disabled"=true

DbProf.

com

Column Projection

• The Storage Servers handle Column Projection
• Only columns which are referenced in the query

are returned.
– select list and join columns

• As only the required columns are returned the

www.dbprof.com - © 2013 Jože Senegačnik 19

• As only the required columns are returned the
amount of data transferred between the Storage
Cell and database is significantly reduced
– Required PGA size for such query is also significantly

reduced, thus reduced memory need at the database
level

• Requires offloaded query
• Statistics available in the v$mystat view

DbProf.

com

SQL> select /*+ &user */ countSQL> select /*+ &user */ countSQL> select /*+ &user */ countSQL> select /*+ &user */ count(*) (*) (*) (*) from from from from class_salesclass_salesclass_salesclass_sales ;;;;

Enter value for user: joze6Enter value for user: joze6Enter value for user: joze6Enter value for user: joze6

old 1: select /*+ &user */ count(*) from old 1: select /*+ &user */ count(*) from old 1: select /*+ &user */ count(*) from old 1: select /*+ &user */ count(*) from class_sclass_sclass_sclass_s¸a¸a¸a¸aalesalesalesales

new 1: select /*+ new 1: select /*+ new 1: select /*+ new 1: select /*+ joze6 joze6 joze6 joze6 */ count(*) from */ count(*) from */ count(*) from */ count(*) from class_salesclass_salesclass_salesclass_sales

COUNT(*)COUNT(*)COUNT(*)COUNT(*)

--

90000000900000009000000090000000

Elapsed: 00:00:04.57Elapsed: 00:00:04.57Elapsed: 00:00:04.57Elapsed: 00:00:04.57

SQLSQLSQLSQL> @> @> @> @dbstatdbstatdbstatdbstat

www.dbprof.com - © 2013 Jože Senegačnik 20

SQLSQLSQLSQL> @> @> @> @dbstatdbstatdbstatdbstat

Enter value for Enter value for Enter value for Enter value for sql_textsql_textsql_textsql_text: joze6: joze6: joze6: joze6

old 7: where old 7: where old 7: where old 7: where sql_textsql_textsql_textsql_text like '%&SQL_TEXT%'like '%&SQL_TEXT%'like '%&SQL_TEXT%'like '%&SQL_TEXT%'

new 7: where new 7: where new 7: where new 7: where sql_textsql_textsql_textsql_text like '%joze6%'like '%joze6%'like '%joze6%'like '%joze6%'

LAST_LOAD_TIME SQL_ID CHILD_NUMBER OFFLAST_LOAD_TIME SQL_ID CHILD_NUMBER OFFLAST_LOAD_TIME SQL_ID CHILD_NUMBER OFFLAST_LOAD_TIME SQL_ID CHILD_NUMBER OFF

-- -- -- ------------

2013201320132013----05050505----17/00:24:45 d74f0nbwgkkfc 0 No17/00:24:45 d74f0nbwgkkfc 0 No17/00:24:45 d74f0nbwgkkfc 0 No17/00:24:45 d74f0nbwgkkfc 0 No

2013201320132013----05050505----17/00:24:32 1m88p87jaxvtp 0 Yes17/00:24:32 1m88p87jaxvtp 0 Yes17/00:24:32 1m88p87jaxvtp 0 Yes17/00:24:32 1m88p87jaxvtp 0 Yes

2013201320132013----05050505----16/06:18:55 d74f0nbwgkkfc 0 No16/06:18:55 d74f0nbwgkkfc 0 No16/06:18:55 d74f0nbwgkkfc 0 No16/06:18:55 d74f0nbwgkkfc 0 No

Elapsed: Elapsed: Elapsed: Elapsed: 00:00:00.2400:00:00.2400:00:00.2400:00:00.24

DbProf.

com

PLAN_TABLE_OUTPUTPLAN_TABLE_OUTPUTPLAN_TABLE_OUTPUTPLAN_TABLE_OUTPUT

--

SQL_ID 1m88p87jaxvtp, child number 0SQL_ID 1m88p87jaxvtp, child number 0SQL_ID 1m88p87jaxvtp, child number 0SQL_ID 1m88p87jaxvtp, child number 0

--

select /*+ joze6 */ count(*) from select /*+ joze6 */ count(*) from select /*+ joze6 */ count(*) from select /*+ joze6 */ count(*) from class_salesclass_salesclass_salesclass_sales

Plan hash value: 3145879882Plan hash value: 3145879882Plan hash value: 3145879882Plan hash value: 3145879882

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time || Id | Operation | Name | Rows | Cost (%CPU)| Time || Id | Operation | Name | Rows | Cost (%CPU)| Time || Id | Operation | Name | Rows | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | | 317K(100)| || 0 | SELECT STATEMENT | | | 317K(100)| || 0 | SELECT STATEMENT | | | 317K(100)| || 0 | SELECT STATEMENT | | | 317K(100)| |

| 1 | SORT AGGREGATE | | 1 | | || 1 | SORT AGGREGATE | | 1 | | || 1 | SORT AGGREGATE | | 1 | | || 1 | SORT AGGREGATE | | 1 | | |

| 2 | TABLE ACCESS STORAGE FULL| CLASS_SALES | 90M| 317K (1)| 00:41:22 || 2 | TABLE ACCESS STORAGE FULL| CLASS_SALES | 90M| 317K (1)| 00:41:22 || 2 | TABLE ACCESS STORAGE FULL| CLASS_SALES | 90M| 317K (1)| 00:41:22 || 2 | TABLE ACCESS STORAGE FULL| CLASS_SALES | 90M| 317K (1)| 00:41:22 |

www.dbprof.com - © 2013 Jože Senegačnik 21

| 2 | TABLE ACCESS STORAGE FULL| CLASS_SALES | 90M| 317K (1)| 00:41:22 || 2 | TABLE ACCESS STORAGE FULL| CLASS_SALES | 90M| 317K (1)| 00:41:22 || 2 | TABLE ACCESS STORAGE FULL| CLASS_SALES | 90M| 317K (1)| 00:41:22 || 2 | TABLE ACCESS STORAGE FULL| CLASS_SALES | 90M| 317K (1)| 00:41:22 |

--

14 rows selected.14 rows selected.14 rows selected.14 rows selected.

DbProf.

com

SQL> select /* &user */ distinct CUST_TYPE from class_sales;

C

-

Y

N

Elapsed: 00:00:08.79

SQL> @dbstat

www.dbprof.com - © 2013 Jože Senegačnik 22

SQL> @dbstat

Enter value for sql_text: joc9

LAST_LOAD_TIME SQL_ID CHILD_NUMBER OFF

------------------- ------------- ------------ ---

2013-05-17/01:12:30 7am2f4kyx3396 0 No

2013201320132013----05050505----17/01:09:28 0z7vz5w9t8hhp 0 Yes17/01:09:28 0z7vz5w9t8hhp 0 Yes17/01:09:28 0z7vz5w9t8hhp 0 Yes17/01:09:28 0z7vz5w9t8hhp 0 Yes

2013-05-16/07:06:05 7am2f4kyx3396 0 No

Elapsed: 00:00:00.23

DbProf.

com

SQL> select decode(name,

2 'cell physical IO bytes saved by storage index', 'SI
Savings',

'cell physical IO interconnect bytes returned by smart scan',
'Smart Scan') as stat_name,

4 value/1024/1024 as value

5 from v$mystat s, v$statname n

6 where s.statistic# = n.statistic#

7 and n.name in ('cell physical IO bytes saved by storage 'cell physical IO bytes saved by storage 'cell physical IO bytes saved by storage 'cell physical IO bytes saved by storage
indexindexindexindex',

www.dbprof.com - © 2013 Jože Senegačnik 23

indexindexindexindex',

8 'cell physical IO interconnect bytes returned by smart 'cell physical IO interconnect bytes returned by smart 'cell physical IO interconnect bytes returned by smart 'cell physical IO interconnect bytes returned by smart
scanscanscanscan');

STAT_NAME VALUE

---------- ----------

SI Savings 0

Smart Scan 1055.22408

Elapsed: 00:00:00.00

DbProf.

com

Storage Index Usage
select /* &USER select /* &USER select /* &USER select /* &USER */ count*/ count*/ count*/ count(*)(*)(*)(*)

from from from from class_salesclass_salesclass_salesclass_sales

where where where where currency_typecurrency_typecurrency_typecurrency_type is is is is null;null;null;null;

COUNTCOUNTCOUNTCOUNT(*)(*)(*)(*)

--

1111

Elapsed: 00:00:00.11Elapsed: 00:00:00.11Elapsed: 00:00:00.11Elapsed: 00:00:00.11

SQL> select decode(nameSQL> select decode(nameSQL> select decode(nameSQL> select decode(name, 'cell , 'cell , 'cell , 'cell physical IO bytes saved by storage index', 'SI Savings',physical IO bytes saved by storage index', 'SI Savings',physical IO bytes saved by storage index', 'SI Savings',physical IO bytes saved by storage index', 'SI Savings',

3 'cell physical IO interconnect bytes returned by smart scan', 'Smart Scan') as 3 'cell physical IO interconnect bytes returned by smart scan', 'Smart Scan') as 3 'cell physical IO interconnect bytes returned by smart scan', 'Smart Scan') as 3 'cell physical IO interconnect bytes returned by smart scan', 'Smart Scan') as stat_namestat_namestat_namestat_name,,,,

www.dbprof.com - © 2013 Jože Senegačnik 24

3 'cell physical IO interconnect bytes returned by smart scan', 'Smart Scan') as 3 'cell physical IO interconnect bytes returned by smart scan', 'Smart Scan') as 3 'cell physical IO interconnect bytes returned by smart scan', 'Smart Scan') as 3 'cell physical IO interconnect bytes returned by smart scan', 'Smart Scan') as stat_namestat_namestat_namestat_name,,,,

4 value/1024/1024 as value4 value/1024/1024 as value4 value/1024/1024 as value4 value/1024/1024 as value

5 from 5 from 5 from 5 from v$mystatv$mystatv$mystatv$mystat s, s, s, s, v$statnamev$statnamev$statnamev$statname nnnn

6 where 6 where 6 where 6 where s.statistics.statistics.statistics.statistic# = # = # = # = n.statisticn.statisticn.statisticn.statistic####

7 and n.name in ('cell physical IO bytes saved by storage index',7 and n.name in ('cell physical IO bytes saved by storage index',7 and n.name in ('cell physical IO bytes saved by storage index',7 and n.name in ('cell physical IO bytes saved by storage index',

8 'cell physical IO interconnect bytes returned by smart scan');8 'cell physical IO interconnect bytes returned by smart scan');8 'cell physical IO interconnect bytes returned by smart scan');8 'cell physical IO interconnect bytes returned by smart scan');

STAT_NAME VALUESTAT_NAME VALUESTAT_NAME VALUESTAT_NAME VALUE

-- --

SI Savings 8173.73438SI Savings 8173.73438SI Savings 8173.73438SI Savings 8173.73438

Smart Scan .001724243Smart Scan .001724243Smart Scan .001724243Smart Scan .001724243

Elapsed: 00:00:00.01Elapsed: 00:00:00.01Elapsed: 00:00:00.01Elapsed: 00:00:00.01

DbProf.

com

Check Offloading

select sql_id,

decode(IO_CELL_OFFLOAD_ELIGIBLE_BYTES,0,'No','Yes') Offloaded,

decode(IO_CELL_OFFLOAD_ELIGIBLE_BYTES,0,0,

100*

(IO_CELL_OFFLOAD_ELIGIBLE_BYTES/IO_INTERCONNECT_BYTES)/

IO_CELL_OFFLOAD_ELIGIBLE_BYTES) as "IO_SAVED"

from v$sql

www.dbprof.com - © 2013 Jože Senegačnik 25

where sql_text like '%&sql_text%';

*True most of the time

Source: Kerry Osborne

DbProf.

com

Predicate Filtering

• Storage server evaluates the query predicates.

• Only rows which pass the predicates are returned from
storage server.

• Normal database reads all required rows (blocks) and

www.dbprof.com - © 2013 Jože Senegačnik 26

• Normal database reads all required rows (blocks) and
predicates are applied after.

• Result from storage server is stored in PGA.

• Result is already at least partially processed so there is less
work on database level.

DbProf.

com

Offloadable Functions

• Not every function can be offloaded.
• Offloadable functions are defined in v$sqlfn_metadata

SQL> select OFFLOADABLE, count(*) from v$sqlfn_metadatav$sqlfn_metadatav$sqlfn_metadatav$sqlfn_metadata group by
OFFLOADABLE;

OFF COUNT(*)
--- ----------

www.dbprof.com - © 2013 Jože Senegačnik 27

--- ----------
NO 530
YES 393

• When function is non-offloadable the data is returned to the
SGA as in traditional systems

• Functions used in where clause are executed for every single
row (at partucular step of the execution plan), so offloading is
very beneficial to filter out as many rows as possible.

DbProf.

com

Offloadable Functions (cont.)

SQL> select distinct name from v$sqlfn_metadata where ANALYTIC='YES';

NAME

STDDEV

MAX

LAG

RANK

MIN

www.dbprof.com - © 2013 Jože Senegačnik 28

MIN

COUNT

SUM

AVG

LEAD

…

42 rows selected.

SQL> select name from v$sqlfn_metadata where ANALYTIC='YES' and OFFLOADABLE='YES';

no rows selected

DbProf.

com

Storage Indexes

• Used to eliminate disk I/O operations.
• The only Exadata feature which really eliminates disk reads.
• Built automatically by the cell servers for a maximum of 8 columns

per table.
• No documented way to alter or tune them.
• Storage index store the min and max column values for disk storage

units (1MB by default)

www.dbprof.com - © 2013 Jože Senegačnik 29

units (1MB by default)
• So during the query the storage units which don’t contain the

requested values are skipped
• Highly dependent on data distribution, therefore very effective on

sorted or partitioned data
• There were many bugs related to their usage in past.
• Problematic because they are created on the fly and may or may not

be present so the response time can differ significantly.

DbProf.

com

Storage Indexes Usage

• Requirement for Storage Index usage besides smart scan:
– A where clause with at least one predicate
– Smart Scan (of course)
– A simple comparison operator (=, <, >, BETWEEN, IS (not)

NULL, etc.)

www.dbprof.com - © 2013 Jože Senegačnik 30

• Storage Indexes are used:
– Multi-column predicates
– Joins
– Parallel Queries
– HCC tables
– Partitions

DbProf.

com

When Storage Indexes Are Not Used

• Not Equals (!=) operators

– Logical, isn’t it

• LOB’s / CLOBs

• Column encryption

www.dbprof.com - © 2013 Jože Senegačnik 31

• Column encryption

• Wildcards

• Where clauses with sub-queries

• Clustered Tables / IOT

DbProf.

com

Not Equals (!=) operator

select count(trans_id)

from class_sales

where trans_id <>'a‘;

COUNT(TRANS_ID)

90000000

Elapsed: 00:00:04.67

www.dbprof.com - © 2013 Jože Senegačnik 32

SQL> select decode(name, 'cell physical IO bytes saved by storage index', 'SI Savings',

'cell physical IO interconnect bytes returned by smart scan', 'Smart Scan') as stat_name,

value/1024/1024 as value

from v$mystat s, v$statname n

where s.statistic# = n.statistic#

and n.name in ('cell physical IO bytes saved by storage index',

'cell physical IO interconnect bytes returned by smart scan');

STAT_NAME VALUE

---------- ----------

SI Savings 0

Smart Scan 1055.12666

DbProf.

com

Storage Indexes (cont.)

• Storage Indexes are persisted in the memory of the storage cells,
not in Smart Flash Cache, and not on disk

• Rebuilt after a storage cell restart or when a column for which a
storage index was built was updated.

www.dbprof.com - © 2013 Jože Senegačnik 33

• Able to detect NULL values – unlike b-tree indexes

• New feature with undocumented “features” – bugs

– Date strings which use 2 digit years may ignore a Storage Index

• No Smart Scan, no Storage Index usage!

DbProf.

com

Conclusions

• Exadata Features are Cumulative

• An offloaded full table scan or fast full index scan which
is offloaded can take advantage:

– Column Projection which reduces the size of the return set

www.dbprof.com - © 2013 Jože Senegačnik 34

– Column Projection which reduces the size of the return set

– Predicate Filtering further reduces the return set

– Smart scan can be used on partitioned tables

– Tables which are pinned in the Exadata Smart Flash Cache
(ESFC) can be smart scanned

DbProf.

com

How To Get Things Working

• Queries must be executed in Direct Path mode. Force Direct Path mode by:

– Forcing Parallelization

– Forcing Full Table Scans (drop indexes / make them invisible)

– Using appropriate hints (PARALLEL / FULL / INDEX_FFS)

– Setting the instance parameter _serial_direct_read = true

www.dbprof.com - © 2013 Jože Senegačnik 35

• Verifying that Smart Scans were performed
– Verify that query was OFFLOADED

– Verify that Storage Indexes are being used

– SQL trace shows “smart table/index scan”, Active session history,…

DbProf.

com

Exadata Smart Flash Cache

• Objects are automatically cached unless the object level
parameters are used:
– NONE - Never cache this object
– DEFAULT - Automatic caching (default setting for single block

reads)
– KEEP - Pin an object in ESFC and allow SmartScans to find it

www.dbprof.com - © 2013 Jože Senegačnik 36

• To pin a table in ESFC use the following command:

SQL> ALTER TABLE customers STORAGE (CELL_FLASH_CACHE KEEP);

• To un-pin a table in ESFC use the following command:

SQL> ALTER TABLE customers STORAGE (CELL_FLASH_CACHE DEFAULT);

DbProf.

com

ESFC (cont.)

• Only 80% of ESFC may be used for table pinning, the
rest is used for automated caching.

• Pinned objects are removed from ESFC when:

– Object is dropped or truncated

www.dbprof.com - © 2013 Jože Senegačnik 37

– Object is dropped or truncated

– Object is not accessed for 48 hours

– Object is downgraded to DEFAULT or NONE

DbProf.

com

References

• Frits Hoogland: About multiblock reads

– http://fritshoogland.files.wordpress.com/2012/06/about-multiblock-reads-
v2.pdf

• Enkitec Exadata Education – Optimizing Exadata Performance

www.dbprof.com - © 2013 Jože Senegačnik 38

DbProf.

com

Q&A

Thank you for your interest!

www.dbprof.com - © 2013 Jože Senegačnik 39

Q&A

