Joining Tables —
Isn’t that simple?

Joze Senegacnik

joze.senegacnik@dbprof.com

DbbDrof.
com

About the Speaker

Joze Senegacnik

0) el
Owner of Dbprof d.o.o. akT@le N
First experience with Oracle Version 4.1 in 1988 d

24+ years of experience with Oracle RDBMS. ! _

Proud member of the OakTable Network www.oaktable.net A, | ORACLE

ACE Director

Oracle ACE Director

Co-author of the OakTable book “Expert Oracle Practices” ACE
by Apress (Jan 2010)

VP of Slovenian OUG (SIOUG) board
e CISA - Certified IS auditor Aearis Practitiss
e Blog about Oracle: http://joze-senegacnik.blogspot.com

e PPL(A) / IR(SE) — private pilot license, instrument rating
e Blog about flying: http://jsenegacnik.blogspot.com

e Blog about Buildin% Ovens, Baking and Cooking:
http://senegacnik.blogspot.com

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.

Join Methods

com

e (CBO uses three join methods:
— Nested-loop

e inner-joins, outer-joins, semi-joins, and anti-joins
— Sort-merge
e inner-joins, outer-joins, semi-joins, and anti-joins
— Hash join
e inner-joins, outer-joins, semi-joins, and anti-joins
e Every method is good for a different join cardinality and usually the CBO

selects the most appropriate one, however there are cases, when
unfortunately this is not true.

e How we can determine that the join method is not the optimal one?
— Most likely the response time is beyond the expected one ©
— Checking the execution plan to determine which type of join was used

— Looking at the estimated and actual cardinalities (after the statement is
executed at least once)

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.
com

Join Methods Availability

e Not always are all join methods available.

e Some limitations:

— HASH JOIN works only for equality join predicates, but
not for any other like <>, >=, <=, ...

— CARTESIAN JOIN is only possible in SORT MERGE join

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.

General Cost Calculation Formulas for Joins

com

o NL -

NESTED LOOP JOIN

— join cost = cost of accessing outer table + (cardinality of
outer table * cost of accessing inner table)

| 1d | Operation | Name | Rows | Cost | Execs | Row$ | Activity |
I I I | (Estim) | I | (Actugl) | (%) I
5	NESTED LOOPS I I 1	7	1	3			
6	PARTITION RANGE ITERATOR		1	6	1	336K	
7	PARTITION LIST SINGLE		1	6	1	336K	
8	TABLE ACCESS BY LOCAL INDEX ROWID	LOG	1] 6	1] 336K	71.43		
9	INDEX RANGE SCAN	LOG_IDX3	2	3	1	3M	
10	TABLE ACCESS BY GLOBAL INDEX ROWID	XTRANSLOG	1] 1] 336K	3			
11	INDEX UNIQUE SCAN	XTRANSLOG_PK	1		336K	336K	28.57

Joining Tables

www.dbprof.com - © 2012 Joze Senegacnik A Oracle ACE Director

DbbDrof.

com
Inefficient Nested-loop Join
| Id | Operation | Name | Rows | Cost | Execs | Rows | Activity |
I I I | (Estim) | I | (Actual) | (%) I
O	SELECT STATEMENT				1	3	
1	SORT ORDER BY		1	9	1	3	
2] FILTER				1	3		
3	NESTED LOOPS I I I I 1	3					
4	NESTED LOOPS I I 1	8	1] 3				
5	NESTED LOOPS I I 1	7	1	3			
6	PARTITION RANGE ITERATOR		1	6	1	336K	
7	PARTITION LIST SINGLE		1	6	1	336K	
8	TABLE ACCESS BY LOCAL INDEX ROWID	LOG	1	6	1	336K	71.43
9	INDEX RANGE SCAN	LOG_IDX3	2	3] 1	3M		
10	TABLE ACCESS BY GLOBAL INDEX ROWID	XTRANSLOG	1	1	336K	3	
11	INDEX UNIQUE SCAN	XTRANSLOG_PK	1		336K	336K	28.57
12	INDEX RANGE SCAN	MT_STATUS_UIDX	1		3	3	
13	TABLE ACCESS BY INDEX ROWID	MT_STATUS	1	1	3	3	
6

Joining Tables

www.dbprof.com - © 2012 Joze Senegacnik A Oracle ACE Director

DbbDrof.

com
SM — SORT MERGE JOIN
join cost = (cost of accessing outer table + outer sort cost) +
(cost of accessing inner table + inner sort cost)
Id	Operation	Name	Rows	Bytes	Cost (%CPU)
0	SELECT STATEMENT		2250K	25M	1171 (98)
1	MERGE JOIN		2250K	25M	1171 (98)
2	SORT JOIN		30000	175K	23 (31)
3	TABLE ACCESS FULL	T1	30000	175K	17 (6)
* 4	FILTER			I I	
* 5	SORT JOIN		30000	175K	23 (31)
6	TABLE ACCESS FULL	T2	30000	175K	17 (6)
Predicate Information (identified by operation id):
4 - filter("T1"."C2">="T2"."C2")
5 — access (INTERNAL_FUNCTION ("T1"."C1")>=INTERNAL_ FUNCTION ("T2"."C1"))
filter (INTERNAL_FUNCTION ("T1"."C1")>=INTERNAL_ FUNCTION ("T2"."C1l"))
7

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

HASH JOIN

DbbDrof.

com

e HASH JOIN
— join cost = (cost of accessing outer table) + (cost of building hash table) + (cost of accessing
inner table)
Id	Operation [Name	Rows	Cost	Execs	Rows	Activity	
		(Estim)			(Actua®l)	%	
O	SELECT STATEMENT				1] 1594		
1] SORT ORDER BY [[203	34258	1	1594				
2] HASH JOIN [[203	34257	1	1594				
3	HASH _J1QTN		3 I 121 11 111				
4	TABLE ACCESS FULL	C_TYPE	13	4	1	14	
5] TABLE ACCESS FULL	C_PROD_DEF [78	7	1	78			

e First data source is (considered) smaller and thus candidate for creating a hash table in memory.

e The second data source is accessed and probved against the memory hash table.

Joining Tables

www.dbprof.com - © 2012 Joze Senegacnik A Oracle ACE Director

DbbDrof.
com

HASH JOIN

Memory Hash Table - like a single table hash cluster

HASH JOIN : A
DATA SOURCE 1 X X

FTS/INDEX RS/FFS X
DATA SOURCE 2

FTS/INDEX RS/FFS
X
l x x

I X X

X

A
Values are scattered according to the
hash function in order to prevent false
positives.

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.
com

Work Area Memory Reqguirements

A Important for HASH and SORT-MERGE joins
Response time

A
/4

minumum 1 pass (cache) Memory used
optimal

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 10

L BN 2N RPN
)

PGA aggregate

aggregated persistent
area + a part of
the run time area
of all
4 server processes

A

PGA_AGGREGATE_TARGET

1%t step

SQL Memory Target (auto target) <—

TS

memory drifL
I_L\
<

/ v$sqgl_workarea
WP | === [WP, | <
Global
Memory WORK A;EA TABLE (X$QESMMIWT) MEMORY
v$sqgl_workarea_active
. Bound i g MANAGER
WA Free | |€=—|
HJI\ !‘éﬁ% st \
WA; < Free 4—%,..- GLOBAL
BITMAR) list MEMORY

MANAGER
(CKPT)

29 step (every 3 seconds bound is published)

11

DbbDrof.
com

Clustering of Data

e Many times one can spot that the most expensive operation was
— TABLE ACCESS BY LOCAL INDEX ROWID

e Isn't the ROWID access the best one? — ROWID is actually the
pointer to the row.

e Unfortunately the distribution of rows in previous case was such
that we had to read many blocks because most likely each block
contained only one matching row.

e What can be the remedy?

— For frequent queries we can organize data in such order that frequent
queries will benefit of the actual data clustering.

— Possible solutions:

e Using Index organized table (IOT) where the rows are clustered by the value of
the primary key (composite key)

e Sorting data in the partition after there are no more changes in that partition
e The goal is simple — reduce the number of blocks visited.

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 12

DbbDrof.
com

Clustering of Data

e How many times you insert data?
e How many times you update data?
e How many times you access data?

o It is obvious for which operation we should
optimize.
e However, optimizing for one scenario may

substantially degrade another — so don't forget to
test first!!!

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 13

DbbDrof.

com
Heap and Index Organized Tables
Heap Organized Table Index Organized Table
« Rows clustered according to the
primary key
» Secondary indexes can be used
for other queries but they could
become stale
14

Joining Tables

www.dbprof.com - © 2012 Joze Senegacnik A Oracle ACE Director

DbbDrof.
com

Clustering of Data(2)

e The CBO uses Clustering Factor (part of index
statistics) to find out how many blocks should be
visited while performing index range scan.

e High clustering factor means higher cost and the CBO
can potentially choose another index which will give
lower cost.

e (Clustering factor influence:
— No influence on clustering factor for single column indexes!!

— If the order of columns in a concatenated index key is not
important one can lower the clustering factor by putting the
column with the lowest clustering factor in the first place.
Other columns still have some impact on the clustering factor
when there are many rows sharing the same value for the
first column.

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 15

DbbDrof.

com
Clustering factor (low)
>=120
>=19, >=67 >=145, >=185
/ : \ / : "
10,1517 |, 19,27,58 > 67,89,119 ” 120,125 146,150,173 185,190,202
16

Joining Tables

www.dbprof.com - © 2012 Joze Senegacnik A Oracle ACE Director

DbbDrof.

i
Clustering factor (medium)
>=120
/ \
>=19, >=67 >=145, >=185
\ / \
7 ; \ 7 ; -
10,15,17 19,27,58 > 67,89,119 ” 120,125 146,150,173 185,190,202‘
17

Joining Tables

www.dbprof.com - © 2012 Joze Senegacnik A Oracle ACE Director

DbbDrof.

com
Clustering factor (high)
>=120
>=19, >=67 >=145, >=185
/ : \ / : "
10,15,17 19,27,58 > 67,89,119 ” 120,125 146,150,173 185,190,202
18

Joining Tables

www.dbprof.com - © 2012 Joze Senegacnik A Oracle ACE Director

Problem of Data Distribution

DbbDrof.
com

Rows are ¢

ustered

Rows are spread across the table

When CBO detects that it would perform more I0 using an index then by performing a

Joining Tables

FTS it decides to use full table scan (FTS)

www.dbprof.com - © 2012 Joze Senegacnik A Oracle ACE Director

19

DbbDrof.
com

Full Table Scans

o Full Table Scans (FTS) are not always evil !

e FTS could be the best access path
— FTS is done by multi block reads (number of blocks is OS
dependent)

— FTS does not flood the buffer cache with table data.
Frequently used data blocks will remain in buffer cache.

— Due to low data clustering we have to read almost all table
blocks and therefore a FTS is faster (less I/O operations —
they are multi block) than first accessm? index with a single
block I/O and subsequent access to table blocks again with a
single block I/O.

o Alternate method to get data is FAST FULL INDEX
SCAN — used when all rows are present in index and
the index key contains the value(s) required.

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 20

DbbDrof.

com
Full Table Scan
db file multiblock read count = 5
multiblock read multiblock read
—

D

D

D

D

D

D

Joining Tables

www.dbprof.com - © 2012 Joze Senegacnik A Oracle ACE Director

21

DbbDrof.

com
Index Fast Full Scan

LEGEND:

SH=segment header
db file multiblock read count=5 R=root block

B=branch block

L=leaf block

multiblock read multiblock read
> > —p

E%E:IIII]L L L L L B L L B "o L

discard discard discard

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 22

DbbDrof.
com

Index Table Access

. Mgny times only PK/FK indexes are created without any “performance
indexes”

e PK indexes have low clustering factor, FK usually very high.

e Do we need to create another index?

— Sometimes yes, but many times we can just add some additional columns to the index to
become more ‘selective’.

— Oracle supports using non-unique indexes to enforce uniqueness!
— Don't do something like this (I have seen this too many times):

e Index2 on coll, col
e Index3 onc this one can sati uirements)

at every index adds about 110% more logica
has to be maintained

e Index blocks are cached better in buffer cache than table block (only
because they are used more frequently). Hence traversing them will infer
mostly logical I/O and only small physical I/0.

e OPTIMIZER_INDEX_CACHING init parameter defines the percentage of
cached index blocks that could be expected (NL joins, IN-list operations).

g DML operations because it

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 23

DbbDrof.
com

How Much of Index Key Can Be Used?

C1 C2 #C3 5 C4
Row1 100 20 L~ 1 P
Row?2 100 20 2~ D
Row3 100 207 _— 3 G

e Indexl key is
e The queryi

us assume this is a FK index)

7
select c3,c4’/,

from T
where cl1 = 100
and c2 = 20

Do we need a subsequent table access?

What if we create index with index key C1,C2,C3,C4

No table access at all, index key contains all required data!
The foreign key index can have additional column(s)

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 24

DbbDrof.
com

Special cases

® Summing (when this is a very frequent operation)

— INDEX RANGE SCAN can be used for summing if the
value to be summed is present in the index key.

— Usually one can just add value to the most appropriate
index (PK index)

— Result: faster execution due to lower LIO, for such
query no table blocks are visited hence they don’t need
to be in the buffer cache.

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 25

DbbDrof.
com

Increasing the Index Selectivity

e Making index more selective

— Add column(s) to the index in order to reduce the number of rows

which are returned by the index ran?e scan - filter out as many rows
as possible already at the index level.

— Reasons:

e Table blocks are not cached so well, therefore likely more PIO — PIO is slow in
comparison with LIO.

e Index range scan scans whole index blocks, while table access reads just one or
several rows from a table block.

e \When this should be used:

— Huge index range scans which turn out to have low cardinality after
filtering out the rows at table level.

e Do this only if you have very frequent queries which can benefit
from this optimization.

— Drawback — index is bigger what really increases the amount of
workload — trade off process

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 26

DbbDrof.
com

Index Compression

« Making index smaller — more rows will be cached
Regular index Compressed index

Key values Prefix #0 row#0 1,1 #2

Columnl Column2 Column3 Prefix #1 row#0 1,2 #3

1 1 ‘ABCDH’

1 1 ‘GHSLL’ Entry #0: ‘ABCDH’ prefix#: O

1 2 ‘SHHKK'’ Entry #1: ‘GHSLL’ prefix#: O

1 2 ‘SZGHL’ Entry #2: ‘SHHKK’' prefix#: 1

1 2 ‘HKKKS’ Entry #3: ‘SZGHL’ prefix#: 1
Entry #4: ‘HKKKS’' prefix#: 1

create unique index XXX on YYY(¢cl, c2, c3) compress 2;

27

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.
com

Join Elimination And Constraints

e Eliminate unnecessary joins if there are constraints defined on join
columns. If join has no impact on query results it can be eliminated.

— e.departmens_id is foreign key and joined to primary key d.department_.id

e Eliminate unnecessary outer joins — doesn’t even require primary key —
foreign key relationship to be defined.

SQL> select e.first_name, e.last_name, e.salary
from employees e,
departments d
where e.department_id = d.department_id;

—————————————————————————————————————— t-—mm
| Id | Operation | Name | Rows | Bytes | Cost | Time |
—————————————————————————————————————— t-—mmmm
| O | SELECT STATEMENT | | | | 3 | |
| 1 | TABLE ACCESS FULL | EMPLOYEES| 106 | 2332 | 3 | 00:00:01 |
—————————————————————————————————————— t-—mmmm

Predicate Information:

1 - filter("E"."DEPARTMENT_ID" IS NOT NULL)

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 28

DbbDrof.
com

JE - Join Elimination (2)

e Purpose of join elimination
— Such situations are very common when a view is used which contains a join
and only a subset of columns is used.
— In 11gR1 the optimization became available also for ANSI compliant joins.

e Known Limitations (source: Optimizer group blog)
— Multi-column primary key-foreign key constraints are not supported.

— Referring to the join key elsewhere in the query will prevent table
elimination. For an inner join, the join keys on each side of the join are
equivalent, but if the query contains other references to the []om key from
the table that could otherwise be eliminated, this prevents elimination. A
workaround is to rewrite the query to refer to the join key from the other

table.

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 29

DbbDrof.
com

Partition Pruning

— CBO ability to eliminate partitions that do not need to be
scanned, and only access those which are concerned by
predicates

— Used in

e Range, LIKE, equality, and IN-list predicates on the range or list
partitioning columns

e Equality and IN-list predicates on the hash partitioning columns.

e Range partition level and at the hash or list subpartition level
using on composite partitioned objects

e Reduces the amount of data retrieved from disk and shortens the
response time

— Can be applied on tables and indexes

— With a global partitioned index, partition pruning also
eliminates index partitions even when the partitions of
the underlying table cannot be eliminated.

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.
com

Types of Partition Pruning

e Static pruning

— Occurs at statement compile-time - the partitions to be
accessed are known in advance

— Constant literal on the partition key column is used
e Dynamic pruning
— Occurs at run-time - the exact partitions to be accessed
by a statement are not known in advance

— example: bind variables, partitions determined by a
subquery,...

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.
com

How to Identify Pruning

Joining Tables

PLAN_TABLE columns for partition pruning:
PARTITION_ID: Step where pruning occurs
— PARTITION_START First partition accessed
— PARTITION_STOP: Last partition accessed
— FILTER_PREDICATES: The predicate applied

— PARTITION operation with an OPTION associated depending
on the number of partitions accessed

All: All partitions must be accessed

Single: Only one partition is accessed

Iterator: When accessing many partitions

Subqguery: When a subquery is used

OR: When OR is used

Inlist: Same as iterator but for IN-List predicate

Invalid: No partition matches the predicate

Bloom filter: used for partition pruni II()] instead of cost based

subquery pruning (11g, 10gR2 as we

www.dbprof.com - © 2012 Joze Senegacnik A Oracle ACE Director

DbbDrof.
com

Static Partition Pruning

e The partitions to be accessed are determined at
compile time.

e Occurs when:

— the predicates on the partitioning columns use un
equality or a range predicate.

— the predicates must only use constants to enable CBO to
determine the start and stop partition at compile time.
o If static partition pruning is used the actual
partition numbers show up in the Pstart and
Pstop columns of the explain plan.

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.
com

Partition Pruning Technigues

e Basic Partition Pruning

— equality, range, and IN-list are the most commonly used
cases of partition pruning.

e Advanced partition pruning techniques

— presence of more complex predicates or SQL statements

. %rg variables — depends on the current value of bind variable -

IN-list partition pruning - KEY(I)

Partition pruning based on subquery - cost-based decision -
KEY(SQ

Partition pruning based on OR - KEY(OR)

Bloom filtering used in latest versions of 10g and in 11g — not
documented yet!!! - :BF0000

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.
com

Some examples of Dynamic Partition Pruning

e The actual partitions are determined in runtime.

e For IN-list predicate the plan output will show KEY(I) in the partition
start and stop column.

SQL> explain plan for select * from sales where time_id in ('23.11.01','25.11.01");

Explained.

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
| 0 | SELECT STATEMENT | | 1259 | 36511 | 186 (0)] 00:00:03 | | |
| 1 | INLIST ITERATOR | | | I I I | I
| 2 | PARTITION RANGE ITERATOR | | 1259 | 36511 | 186 (0)] 00:00:03 |KEY(I) |KEY(I) |
| 3 | TABLE ACCESS BY LOCAL INDEX ROWID| SALES | 1259 | 36511 | 186 (0)| 00:00:03 |KEY(I) |KEY(I) |
| 4 | BITMAP CONVERSION TO ROWIDS | | | | | I | I
|* 5 | BITMAP INDEX SINGLE VALUE | SALES_TIME_BIX | | | | |IKEY(I) |KEY(I) |

5 - access("TIME_ID"="23.11.01' OR "TIME_ID"='25.11.01")

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.
com

PARTITION RANGE SUBQUERY (10g)

SQL> explain plan for

2 SELECT /*+ use_hash(s t) */ t.day_number_in_month, SUM(s.amount_sold)

3 FROM sales s, times t

4 WHERE s.time_id = t.time_id

5 AND t.calendar_month_desc="'2000-12"

6 GROUP BY t.day_number_in_month;
Id	Operation	Name	Rows	Cost	Pstart	Pstop
O	SELECT STATEMENT		20	645]		
1	HASH GROUP BY		20	645]		
* 2	HASH JOIN		19153	637		
* 3	TABLE ACCESS FULL	TIMES	30	17		
4	PARTITION RANGE SUBQUERY		918K	574	KEY(SQ)	KEY(SQ)
5	TABLE ACCESS FULL	SALES	918K	574	KEY(SQ)	KEY(sSQ)

2 - access("s"."TIME_ID"="T"."TIME_ID")
3 - filter("T"."CALENDAR_MONTH_DESC"="'2000-12")

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.

com

sQL> explain plan for

2 SELECT t.day_number_in_month, SUM(s.amount_sold)

3 FROM sales s, times t

4 WHERE s.time_id = t.time_id

5 AND t.calendar_month_desc="'2000-12"

6 GROUP BY t.day_number_in_month;
Id	oOperation	Name	Rows	Bytes	Cost (%CPU)	Time	Pstart	Pstop
0	SELECT STATEMENT		20	640	232 (1	00:00:03		
1	HASH GROUP BY		20	640	232 (1	00:00:03		
2	NESTED LOOPS							
3	NESTED LOOPS		19153	598K	231 (0)] 00:00:03			
[* 4	TABLE ACCESS FULL	TIMES	30	570	18 (0)	00:00:01		
5] PARTITION RANGE ITERATOR						KEY	KEY	
6	BITMAP CONVERSION TO ROWIDS							
[* 7	BITMAP INDEX SINGLE VALUE	SALES_TIME_BIX					KEY	KEY
8	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	629	8177	231 (0)]	00:00:03	1	1

4 - filter("T"."CALENDAR_MONTH_DESC"="'2000-12")
7 - access("sS"."TIME_ID"="T"."TIME_ID")

Joining Tables www.dbprof.com - © 2012 Joze Senegacnik (A, Oracle ACE Director

DbbDrof.

com

SQL> explain plan for

2 SELECT /*+ use_hash(s t) */ t.day_number_in_month, SUM(s.amount_sold)

3 FROM sales s, times t

4 WHERE s.time_id = t.time_id

5 AND t.calendar_month_desc='2000-12"

6 GROUP BY t.day_number_in_month;
Explained.
Id	operation	Name	Rows	Bytes	Cost (%CPU)	Time	Pstart	Pstop
0	SELECT STATEMENT		20	640	517 (4)] 00:00:07			
1	HASH GROUP BY		20	640	517 (4)	00:00:07		
[* 2	HASH JOIN		19153	598K	515 (4)	00:00:07		
3	PART JOIN FILTER CREATE	:BFO000	30	570	18 (0)	00:00:01		
* 4	TABLE ACCESS FULL	TIMES	30	570	18 (0)] 00:00:01			
5	PARTITION RANGE JOIN-FILTER		918K	11m	493 (3)] 00:00:06	:BFO0000	:BF0000	
6	TABLE ACCESS FULL	SALES	918K	11m	493 (3)] 00:00:06	:BFO000]	:BFO000]	

2 - access("s"."TIME_ID"="T"."TIME_ID")
4 - filter("T"."CALENDAR_MONTH_DESC"="'2000-12")

e :BF0O000 stands for Bloom filter

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.

com
Id	operation	Name	Rows	Bytes	Cost (%CPU)	Time	Pstart	Pstop
0	SELECT STATEMENT		20	640	517 (4)	00:00:07		
1	HASH GROUP BY		20	640	517 (4)	00:00:07		
[* 2	HASH JOIN		19153	598K	515 (4)	00:00:07		
3	PART JOIN FILTER CREATE	:BFO000	30	570	18 (0)	00:00:01		
[* 4	TABLE ACCESS FULL	TIMES	30	570	18 (0)	00:00:01		
5	PARTITION RANGE JOIN-FILTER]		918K	11mM	493 (3)] 00:00:06	:BF0000]	:BF0000	
6	TABLE ACCESS FULL	SALES	918K	11mM	493 (3)]	00:00:06	:BF0000]	:BF0000

2 - access("s"."TIME_ID"="T"."TIME_ID")
4 - filter("T"."CALENDAR_MONTH_DESC"="'2000-12")

o Step 4 — table TIMES is accessed and rows passing the filter
CALENDAR_MONTH_DESC"="'2000-12" are returned

e STEP 3 — a bloom filter is created with the information which partitions contain the relevant
rows; at the same time a memory hash table is built for the outer data source

e Step 5 and 6 — only partitions which contain relevant data according to the bloom filter :BFO000
are accessed and the rows are probed against memory hash table and if they match
("s"."TIME_ID"="T"."TIME_ID") A join is preformed

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.
com

Parallel Query Servers (Slaves)

e Controlled by the QC process

o Slaves are allocated in slave sets, which act as either
producers or consumers.

e A slave set may act as both producer and consumer at
different stages within a query.

e Do most of the work for a parallel query

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

DbbDrof.
com

Parallel Execution Example

SQL> select /*+ parallel(s,4)*/
2 cust_id, count (*)
3 from sales s
4 group by cust_id;

Slave set 1
Consumer
Slave set 2
Producer
9i|o|lee|ele|ele|elel|e
sl 2l 2|2l 2|2l 2]l 2||2|| 2| 2 Table
B E| S| S| S| S| BB S| E|® SALES
QIUOIOIO[TO]|O|I[O([TO]IO|I|O]| O

Joining Tables www.dbprof.com - © 2012 Joze Senegacnik (A, Oracle ACE Director

Table Queues (TQ)

DbbDrof.
com

e Table Queues (TQ) are abstract
communication mechanism

e Slave sets are interconnected by TQ.

e TQ are numbered uniquely based on the
sequence SYS.ORA_TQ_BASES$

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director

Table Queues

DbbDrof.
com

1

Table queue

Slave set 2 @

1

Table queue

Slave set 1 @

Joining Tables

Disk

www.dbprof.com - © 2012 Joze Senegacnik A Oracle ACE Director

CPXL

DbbDrof.
com

Full Partition-Wise Join

select sum(amount_sold)

from sales_ hash s,

@ e @ customers hash c
where s.cust id = c.cust_id

group by cust_last_name;

Partitioned tables:

customers hash
(cust_id)

sales hash
(cust_id)

"

www.dbprof.com - © 2012 Joze Senegaénik‘ﬂu Oracle ACE Director

Joining Tables

Partial Partition-Wise Join

DbbDrof.
com

A
N
=
[

X
e
T

~

N
=

Joining Tables

sales (
sale_date range 4,
department_id hash 3)

departments(
manager_id range 2,
department_id hash 3)

www.dbprof.com - © 2012 Joze Senegacnik A Oracle ACE Director

Composite partitioned tables:

DbbDrof.
com

Conclusions

e When joining tables avoid unnecessary work — reduce as
much the number of blocks visited (LIO/PIO).

e Prepare carefully your index strategy to make your indexes
more selective in order to reduce the amount of LIO/PIO.

e By rewriting your SQL statements you can achieve things
which the CBO currently can't do.

e To be successful you should know your data and also some
internals how Oracle (CBO) works.

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director 46

DbbDrof.
com

Thank you for your interest!

Q&A

Joining Tables www.dbprof.com - © 2012 JozZze Senegacnik (A, Oracle ACE Director ol

