
<Insert Picture Here>

Introducing Exadata X3

Exadata X3 Hardware Overview

• Overall Exadata Architecture remains the same

- Working great, no need for change

- DB Machine names change from X2 to X3 (e.g. X3-2)

• X3 has

- Dramatically more and faster flash memory- Dramatically more and faster flash memory

- More DRAM memory

- Faster CPUs

- More connectivity

- Lower power usage

- Same price as X2

• New entry-level Eighth Rack Database Machine

Exadata X3-2 Database Server Update
New Intel 8-core E5 “SandyBridge” CPUs, more memory, 10GbE

Database

Server

X4170 M2 (current) Sun Server X3-2 (new) Improvement

CPU 6-core X5675

(3.06 GHz mid-bin)

8-core E5-2690

(2.9 GHz top-bin)

1.3X to 1.5X CPU

performance

Memory 96GB (up to 144GB)

8 GB DIMMs

128GB (up to 256GB)

16 GB DIMMs

1.3X normal

1.7X w/expansion

Networking 4 x 1GbE copper

2 x10GbE optical card

4 x 1 or 10 GbE copper

2 x 10GbE optical card

3X more 10GbE

PCIe Bus Gen 2.0 Gen 3.0 Future, requires

Gen 3 cards

Xeon E5 (Sandy Bridge) - higher performance with lower clock speed

Disk Controller, Disks, and InfiniBand are Unchanged

Unlike X2, no performance penalty for memory expansion

Exadata Storage Server Update
4X Flash Capacity

Storage

Server

X4270 M2

(current)

Sun Server X3-2L

(new)

Improvement

Flash 384 GB (4 x 96GB) 1600 GB (4 x 400GB) 4X

Disks 12 x 600GB or

12 x 3TB

No Change No change

CPU 6-core L5640

(2.26 GHz)

6-core E5-2630L

(2.0 GHz)

Similar

Performance(2.26 GHz) (2.0 GHz) Performance

Kept Storage CPU at 6-core low power processor.

Storage CPU requires much less throughput than DB CPU.

Disk Controller and InfiniBand card are unchanged.

Internal memory increased from 24GB to 64GB for managing large flash.

PCI 3.0 included in new servers but will not see benefit until cards redesigned for 3.0.

New F40 Flash PCI Card in Storage
4X Capacity, Better Performance, Better Serviceability

• New F40 eMLC card with 4X capacity

• eMLC is Enterprise grade Multi-level Cell

- eMLC has excellent lifetime. Flash lifetime is guaranteed by Oracle. Any failed cards

Current F20 Card New F40 Card Improvement

Capacity* 96GB 400GB 4 X

Data Scan Rates 1 GB/s >1.4 GB/s 1.4X

- eMLC has excellent lifetime. Flash lifetime is guaranteed by Oracle. Any failed cards

are replaced under Oracle Support contract

• Total read IOPS at the flash card level are much higher than quoted IOPS for DB

Machine. We measure end-to-end SQL IOPs, not low level hardware IOPs.

• Read and Write latency improved by 40% or more

• Reduces Maintenance by replacing Energy Storage Module (ESM) with much

longer lifetime conventional capacitors.

Seamless Upgrades and Expansion

• X2 or V2 systems can be expanded with X3

hardware

- A single Database Machine can have servers from

different generations

- Databases and Clusters can span multiple

generations of hardware

• As always we don’t replace servers or

X3-2

Half to Full

Upgrade in

2012

Upgrade Example

• As always we don’t replace servers or

components inside the servers

- Expand by adding new servers, removing obsolete

• X3 hardware requires recent Exadata software

release (>= 11.2.3.2.0) since servers require

new drivers, firmware, etc.

- X3 hardware does not require a Database, ASM,

or Clusterware upgrade

V2

Initial Quarter

Rack

purchased in

2010

X2-2

Qtr to Half

Upgrade in

2011

Exadata Eighth Rack

• Lower cost entry configuration
- 16 Database Cores, 54 TB Disk, 2.4 TB PCI Flash

- Highly Available configuration with all Exadata features

• Exactly the same hardware as Quarter Rack

• Half the hardware in each server is disabled using software

- Half the CPU cores in each DB server socket

- Half the CPU cores in each Storage server socket- Half the CPU cores in each Storage server socket

- Half the disks and half the flash cards in each Storage server

• DB server local disks are all enabled

- Memory is not disabled - full memory capacity is available

• Upgrade eighth rack to quarter rack by running script

- Capacity on DemandIdeal for

Smaller Systems,

Test, Dev, DR

New Exadata Software

11.2.3.2.011.2.3.2.0

Features work on all hardware generations

Exadata Smart Flash Cache Write-Back
Up to 20X write IOPS

• Caches Write I/Os in flash in addition to Read I/Os

• Accelerates write intensive workloads

- Frequently updated tables and indexes

- 20X more write IOPS than disk on X3

- 10X more write IOPs than disk on V2 and X2

• Database writes go directly to flash cache

Writes I/Os

- Block is kept in cache until it LRUs out

- Could be months or years

- While it is cached, reads or writes will be serviced from cache

- If the block stops being accessed, block will eventually age

out of cache and will be written to disk

• Smart Caching applies

- For example RMAN Backup and Data Pump reads and writes

are not cached in flash

1M Flash Write IOPs

on X3 DB Machines

500K Flash IOPs

on X2 DB Machines

Smart Flash Cache Write-Back Availability

• Write-back cache is persistent across reboots

- Accelerates crash recovery

• No need to reload or recover flash cache

- Write-back speeds redo apply for Recovery and Data Guard

• Redo apply is write IO intensive

• Flash Card failure is transparently and automatically

handled by Exadata and ASM software

- Writes are mirrored across cells, so a database write I/O

Writes I/Os

- Writes are mirrored across cells, so a database write I/O

becomes a flash write to 2 or 3 storage servers

- No interruption to application on flash card failure

- Contents of cache are recovered from mirrors on other cells

• No Administration is needed

- Flash cache is transparent to Database, ASM, RMAN

- As always, RMAN Backups are at the database level

- Automatically backs up latest data on disk and on flash

Enabling Write-Back Cache

• Write-back flash cache is not enabled by default

- Before enabling write-back cache, ASM must be upgraded

• DB Patch for Exadata 11.2.0.3 BP 9 or later

- Enabling write-back is an informed choice

• Not required just because Exadata software update is applied

• Enable write-back cache on Exadata systems with correct ASM

version that have write I/Os as a performance bottleneck

- The best way to determine a write bottleneck is to look for “free

buffer waits” in database wait event statistics

- Can also check for high disk IO latencies and a large percentage of

writes

- Enable using: “Alter Cell flashCacheMode=WriteBack”

Real Workload Write Cache Example

• Peoplesoft Batch

Workload

• X3 Quarter Rack

• Flash writes often in the

60K to 80K IOPs range

• Peak at over 165K • Peak at over 165K

IOPs

• Would need more than

3 full racks without

write-back flash cache

• IO bound job became

CPU and application

bound

Summary

• Same Architecture as Exadata X2

• Latest Technologies and Advances

• Same Price

• Lower Cost Entry Level Eighth Rack

Faster
Bigger

4X Larger Flash Memory 22 TB of Flash Memory per Rack

All X3 Database Machines

10% to 20% Lower Power

20X More Write Performance

33% Faster Database CPUs

Full 10Gb Ethernet to Data Center

4X Larger Flash Memory

10% to 30% Lower Power

33% More Data Throughput

Exadata Smart Flash Write Caching

40X 10Gb ports per Rack

Up to 3 Kilowatt Reduction per Rack

100 GB/sec running SQL

75% More Memory

8-Core Xeon® SandyBridge E5-2690

1 TB to 2 TB per Rack

X3-2 Database Servers

<Insert Picture Here>

Oracle Exadata Software Features

Exadata Hybrid Columnar
CompressionCompression

About Hybrid Columnar Compression

Hybrid Columnar Compressed Tables

• For data that is BULK loaded and queried

• Designed for data that is NOT frequently

updated

• Designed for LOW concurrency environments

• Transaction modifying a single row in a CU

Compression Unit

• Transaction modifying a single row in a CU

locks the entire CU

• Compressed tables allow using conventional

DML (INSERT/UPDATE/DELETE)

• All index types are supported (B-Tree, Bitmap)
10x to 15x

Reduction

Compression Units

• Compression Unit
- Logical structure spanning multiple database blocks

- Data organized by column during data load

- Each column compressed separately

- All column data for a set of rows stored in compression unit

- Column organization brings similar values close together, enhancing
compression

CU HEADER

BLOCK HEADER BLOCK HEADER BLOCK HEADER BLOCK HEADER

C3

C4
C1

C2

C7
C5

C6 C8

C8

Logical Compression Unit

Hybrid Columnar Compression extended to Pillar Axiom and Sun ZFS

Storage Appliance (ZFSSA) storage with DB 11.2.0.3

Exadata Hybrid Columnar Compression
Warehouse and Archive Compression

Warehouse Compression

• 10x average storage savings

• 10x reduction in Scan IO

Archive Compression

• 15x average storage savings

- Up to 70x on some data

• For cold or historical data

Optimized for SpeedOptimized for Speed Optimized for SpaceOptimized for Space

Smaller Warehouse

Faster Performance
Reclaim 93% of Disks

Keep Data Online

Can mix OLTP and hybrid columnar compression by partition for ILM

Warehouse Compression

• Warehouse Compression: LOW and HIGH

– HIGH typically provides a 10x reduction in storage

– LOW typically provides a 6x reduction

• Both levels optimized to increase scan query

performance by taking advantage of fewer number

of blocks readsof blocks reads

• To maximize storage savings and query

performance use default level - HIGH

– LOW should be chosen for environments where load times

are more critical than query performance

Archive Compression

• Archive Compression: LOW and HIGH

– HIGH typically provides a 15x reduction in storage

– LOW typically provides a 10x reduction

• Best approach for ILM and data archival

– Minimum storage footprint

– Minimal access and update requirements – Minimal access and update requirements

– No need to move data to tape or less expensive disks

– Data is always online and always accessible

• Run queries against historical data (without recovering from tape)

• Update historical data

• Supports schema evolution (add/drop columns)

EHCC DDL

- CTAS (create table as select)

• create table foo compress for query as select * from bar1;

- IAS (insert direct load)

• create table foo compress for archive low;

• insert /*+APPEND*/ into foo select * from bar2;

- Compression can be specified at segment level

• Each partition can have different compression type

• create table orders (cid, pid, sid, price, discount, odate)• create table orders (cid, pid, sid, price, discount, odate)

partition by range (cid)

(partition p1 values less than (100000) nocompress,

partition p2 values less than (200000) compress for archive low,

partition p3 values less than (300000) compress for query high,

partition p4 values less than (maxvalue) compress for query low)

enable row movement

as select * from prev_orders;

Efficient Data Storage

• EHCC is a feature of Exadata Storage
- Decompression, selection and projection performed on
storage

- Data is stored compressed on disk and compressed in the
Flash Cache, frequently accessed data cached on Flash
• Table can be forced to be on Flash by setting cell_flash_cache_keep

• EHCC is tightly integrated with Oracle DB 11gR2
- Data is stored compressed in buffer cache (DRAM)

• With EHCC, entire databases can now run in memory
- DRAM can hold 5TB of a compressed database

- Flash can hold 50TB of a compressed database

<Insert Picture Here>

Exadata Hybrid Columnar
CompressionCompression

EXAMPLE

SQL> alter session force parallel query;

SQL> alter session force parallel ddl;

SQL> alter session force parallel dml;

----- CTAS PERFORMANCE

SQL> create table sales_nocompress parallel 4 nologging

2 as select * from sales_big;

Elapsed: 00:00:28.07

SQL> create table sales_query compress for query highSQL> create table sales_query compress for query high

2 parallel 4 nologging as select * from sales_big;

Elapsed: 00:00:05.15

SQL> create table sales_archive compress for archive high

2 parallel 4 nologging as select * from sales_big;

Elapsed: 00:00:12.40

--- COMPRESSION FACTOR

SQL> select table_name, compression, compress_for from user_tables

2 where table_name like 'SALES_%';

TABLE_NAME COMPRESS COMPRESS_FOR

------------------------------ -------- ------------

SALES_ARCHIVE ENABLED ARCHIVE HIGH

SALES_QUERY ENABLED QUERY HIGH

SALES_NOCOMPRESS DISABLED

SQL> select segment_name,sum(bytes)/1024/1024 MB

2 from user_segments

3 where segment_name like 'SALES_%' and

4 segment_type='TABLE'

5 group by segment_name;

SEGMENT_NAME MB

------------------ ----------

SALES_ARCHIVE 30,4 16X

SALES_NOCOMPRESS 505

SALES_QUERY 36,9 13X

----- QUERY PERFORMANCE

SQL> select count(amount_sold), sum(amount_sold) from sales_nocompress

2 where time_id between to_date('01/01/1998','dd/mm/yyyy') and

to_date('31/12/1999','dd/mm/yyyy')

3 and quantity_sold = 1;

...

Elapsed: 00:00:00.66

SQL> select count(amount_sold), sum(amount_sold) from sales_query

2 where time_id between to_date('01/01/1998','dd/mm/yyyy') and

to_date('31/12/1999','dd/mm/yyyy')

3 and quantity_sold = 1;3 and quantity_sold = 1;

...

Elapsed: 00:00:00.62

SQL> select count(amount_sold), sum(amount_sold) from sales_archive

2 where time_id between to_date('01/01/1998','dd/mm/yyyy') and

to_date('31/12/1999','dd/mm/yyyy')

3 and quantity_sold = 1;

...

Elapsed: 00:00:00.58

---- UPDATE PERFORMANCE

SQL> update sales_nocompress set quantity_sold=quantity_sold+4

2 where time_id between to_date('01/01/1998','dd/mm/yyyy') and

to_date('31/12/1999','dd/mm/yyyy‘) and quantity_sold = 1;

426779 rows updated.

Elapsed: 00:00:00.82

SQL> update sales_query set quantity_sold=quantity_sold+4

2 where time_id between to_date('01/01/1998','dd/mm/yyyy') and

to_date('31/12/1999','dd/mm/yyyy‘) and quantity_sold = 1;

426779 rows updated.

Elapsed: 00:00:06.04

SQL> update sales_archive set quantity_sold=quantity_sold+4

2 where time_id between to_date('01/01/1998','dd/mm/yyyy') and

to_date('31/12/1999','dd/mm/yyyy‘) and quantity_sold = 1;

426779 rows updated.

Elapsed: 00:00:14.72

---- UPDATE IMPACT ON COMPRESSION FACTOR

SQL> select segment_name,sum(bytes)/1024/1024 MB

2 from user_segments

3 where segment_name like 'SALES_%' and

4 segment_type='TABLE'

5 group by segment_name;

SEGMENT_NAME MB

------------------ ----------

SALES_QUERY 80,9 initially 30,4

SALES_NOCOMPRESS 505

SALES_ARCHIVE 72,4 initially 36,9

Exadata Smart Storage Capabilities

• Data Intensive processing runs in Exadata
Storage Grid

- Filter rows and columns as data streams from
disks

Exadata Intelligent Storage
Scalable Data Processing

- Example: How much product X sold last quarter

• Exadata Storage Reads 10TB from disk

• Exadata Storage Filters rows by Product & Date

• Sends 100GB of matching data to DB Servers

- Scale-out storage parallelizes execution and
removes bottlenecks

Classic Database I/O & SQL Processing

Model

Exadata Smart Scan Model

Exadata Intelligent Storage

• Exadata implements data intensive

processing in storage
- Row filtering based on “where” predicate

- Column filtering

- Join filtering

- Incremental backup filtering

- Scans on Hybrid Columnar Compressed data

- Scans on encrypted data- Scans on encrypted data

• 10x reduction in data sent to DB servers

is common

• No application changes needed
- Processing is automatic and transparent

- Even if cell or disk fails during a query

Exadata Storage Index
Transparent I/O Elimination with No Overhead

• Storage Index is a Filter (which prunes away unnecessary IOs)

• Is maintained automatically and is transparent to DB

• Collection of in-memory region indexes (RIDX)

• If cell restarts, SI is rebuilt by the next set of queries

• One region index (RIDX) for every 1MB of disk for up to 8 columns

(Exadata determines which)

• Works with uncompressed tables, OLTP compression, HCC,

Putting it all together

tablespace encryption (not column level encryption)

• Would be most effective for clustered columns

• One option is to load data in sorted order
• Works for most data-types (number, float, date, varchar2 ...)
• Works for simple predicates

• Can evaluate <, <=, =, !=, >=, >, is NULL, is NOT NULL
• column < 9 (literal)
• column > :BINDVAR

<Insert Picture Here>

Exadata Smart Scan & Storage
Indexes Indexes

EXAMPLE

---- SMART SCAN DISABLED

---- SESSION IO STATS BEFORE QUERY

SQL> select a.name, b.value/1024/1024 MB

2 from v$sysstat a, v$mystat b

3 where a.statistic# = b.statistic# and

4 (a.name in ('physical read total bytes',

5 'physical write total bytes',

6 'cell IO uncompressed bytes')

7 or a.name like 'cell phy%');

NAME MB

-- -- ----------

physical read total bytes ,109375

physical write total bytes 0

cell physical IO interconnect bytes ,109375

cell physical IO bytes sent directly to DB node to balanceCPU u 0

cell physical IO bytes saved during optimized file creation 0

cell physical IO bytes saved during optimized RMAN file restore 0

cell physical IO bytes eligible for predicate offload 0

cell physical IO bytes saved by storage index 0

cell physical IO interconnect bytes returned by smart scan 0

cell IO uncompressed bytes 0

SQL> -- Broj prodaja u 1998 za quantity_sold=1

SQL> -- ALTER SESSION SET CELL_OFFLOAD_PROCESSING = FALSE;

SQL>

SQL> select /*+ OPT_PARAM('cell_offload_processing' 'false') */ count(*)
from sales_big

2 where time_id between to_date('01/01/1998','dd/mm/yyyy') and

to_date('31/12/1999','dd/mm/yyyy')

3 and

4 quantity_sold = 1;

COUNT(*)

426779

Elapsed: 00:00:04.63

---- SMART SCAN DISABLED

---- SESSION IO STATS AFTER QUERY

SQL> select a.name, b.value/1024/1024 MB

2 from v$sysstat a, v$mystat b

3 where a.statistic# = b.statistic# and

4 (a.name in ('physical read total bytes',

5 'physical write total bytes',

6 'cell IO uncompressed bytes')

7 or a.name like 'cell phy%');

NAME MB

-- -- ----------

physical read total bytes 172,703125

physical write total bytes 0

cell physical IO interconnect bytes 172,703125

cell physical IO bytes sent directly to DB node to balanceCPU u 0

cell physical IO bytes saved during optimized file creation 0

cell physical IO bytes saved during optimized RMAN file restore 0

cell physical IO bytes eligible for predicate offload 0

cell physical IO bytes saved by storage index 0

cell physical IO interconnect bytes returned by smart scan 0

cell IO uncompressed bytes 0

---- SMART SCAN ENABLED

---- SESSION IO STATS BEFORE QUERY

SQL> select a.name, b.value/1024/1024 MB

2 from v$sysstat a, v$mystat b

3 where a.statistic# = b.statistic# and

4 (a.name in ('physical read total bytes',

5 'physical write total bytes',

6 'cell IO uncompressed bytes')

7 or a.name like 'cell phy%');

NAME MB

-- -- ----------

physical read total bytes ,015625

physical write total bytes 0

cell physical IO interconnect bytes ,015625

cell physical IO bytes sent directly to DB node to balanceCPU u 0

cell physical IO bytes saved during optimized file creation 0

cell physical IO bytes saved during optimized RMAN file restore 0

cell physical IO bytes eligible for predicate offload 0

cell physical IO bytes saved by storage index 0

cell physical IO interconnect bytes returned by smart scan 0

cell IO uncompressed bytes 0

SQL> -- Broj prodaja u 1998 za quantity_sold=1

SQL> select count(*) from sales_big

2 where time_id between to_date('01/01/1998','dd/mm/yyyy') and

to_date('31/12/1999','dd/mm/yyyy')

3 and

4 quantity_sold = 1;

COUNT(*)

426779

1 row selected.1 row selected.

Elapsed: 00:00:00.28 Initially 00:00:04.63

---- SMART SCAN ENABLED

---- SESSION IO STATS AFTER QUERY

SQL> select a.name, b.value/1024/1024 MB

2 from v$sysstat a, v$mystat b

3 where a.statistic# = b.statistic# and

4 (a.name in ('physical read total bytes',

5 'physical write total bytes',

6 'cell IO uncompressed bytes')

7 or a.name like 'cell phy%');

NAME MB

-- -- ----------

physical read total bytes 172,46875

physical write total bytes 0

cell physical IO interconnect bytes 4,91526794

cell physical IO bytes sent directly to DB node to balanceCPU u 0

cell physical IO bytes saved during optimized file creation 0

cell physical IO bytes saved during optimized RMAN file restore 0

cell physical IO bytes eligible for predicate offload 172,453125

cell physical IO bytes saved by storage index 12,328125

cell physical IO interconnect bytes returned by smart scan 4,89964294

cell IO uncompressed bytes 160,125

Exadata Smart Flash Cache &

Smart Flash Log

Exadata Smart Flash Cache
Breaks the Disk Random I/O Bottleneck

• Trade-off between disk and Flash

- Disk - cheap, high capacity, low IOPS

- Flash - expensive, lower capacity, tens of thousands
IOPS

• Ideal Solution - Exadata Smart Flash Cache

- Keep most data on disk for low cost

- Transparently move hot data to flash

300 IOPS

- Transparently move hot data to flash

- Use flash cards instead of flash disks to avoid disk
controller limitations

- Flash cards in Exadata storage

• 4 x 400GB PCI Express Flash Cards per Exadata
Server

10.000s IOPS

Exadata Smart Flash Cache
Intelligently manages flash

Understands different types of I/Os from database:

• Frequently accessed data and index blocks are cached

• Control file reads and writes are cached

• File header reads and writes are cached

• DBA can influence caching priorities

• I/Os to mirror copies are not cached

• Backup-related I/O is not cached

• Data Pump I/O is not cached

• Data file formatting is not cached

• Table scans do not monopolize the cache

Exadata Smart Flash Cache

• CELL_FLASH_CACHE setting for the object
- DEFAULT – managed by LRU

- KEEP - 80% of the total cache size

- NONE

• Cache hint:
- CACHE indicates that the I/O should be cached: I/O is for an index lookup.

- NOCACHE indicates that the I/O should not be cached: I/O is for a mirrored
block of data or is a log write.block of data or is a log write.

- EVICT

• Large I/Os on objects with CELL_FLASH_CACHE set to
DEFAULT are not cached.

• Smart table scans are usually directed to disk. If object has a
CELL_FLASH_CACHE KEEP, some reads may be satisfied from
Flash

Smart Flash Logging

High-performance, low-latency, reliable temporary store for

redo log writes:

- Log writes are directed BOTH to disk and Exadata Smart Flash

Log.

- Processing continues after fastest acknowledgement

- It is conceptually similar to multiplexed redo logs- It is conceptually similar to multiplexed redo logs

- Exadata Storage Server automatically manages Smart Flash Log

and ensures that all log entries are persisted to disk

- By default uses 32 MB on each flash-based cell disk, total of

512 MB on each Exadata Storage Server.

Exadata Smart Flash Log
Accelerate Transaction Response Times using Flash

Default (on left)

- Choppy response

- High Outliers

Smart Flash Log

- 3x faster response

- Much lower outliers

Transaction Response Times

Smart Flash Log Enabled

Automatic and

Transparent

Automatic and

Transparent

• Transparently uses Flash as a parallel write

cache to disk controller cache

- Whichever write completes first wins (disk or flash)

• Uses almost no flash capacity (0.1% of capacity)

• Reduces response time and outliers

- “log file parallel write” AWR histogram improves

- Greatly improves “log file sync”

What Smart Flash Logging is and is

not

It is solely a mechanism for providing low latency redo

log writes.

It is not a mirroring scheme because we don't keep a full

copy of the entire redo log; we only mirror the tail/end of

the redo log (this also enables us to use a relatively the redo log (this also enables us to use a relatively

small amount of flash disk space, which allows the bulk

of the remaining flash disk space to be used for Smart

Flash Cache).

It is not a cache because we don't satisfy read requests

from flash disk; redo log reads are always done from

hard disk.

<Insert Picture Here>

Exadata Smart Flash Cache

EXAMPLE

---- SESSION IO STATS BEFORE WORKLOAD

SQL> select a.name, b.value from v$sysstat a, v$mystat b

2 where a.statistic# = b.statistic# and

3 (a.name like '%flash cache read hits'

4 or a.name like 'cell phy%'

5 or a.name like 'physical read tot%'

6 or a.name like 'physical read req%');

NAME VALUE

-- ----------

physical read total IO requests 58

physical read total multi block requests 0

physical read requests optimized 56 physical read requests optimized 56

physical read total bytes optimized 917504

physical read total bytes 950272

cell physical IO interconnect bytes 950272

cell physical IO bytes sent directly to DB node to balanceCPU u 0

cell physical IO bytes saved during optimized file creation 0

cell physical IO bytes saved during optimized RMAN file restore 0

cell physical IO bytes eligible for predicate offload 0

cell physical IO bytes saved by storage index 0

cell physical IO interconnect bytes returned by smart scan 0

cell flash cache read hits 56

---- SIMULATE OLTP WORKLOAD

---- FLUSH BUFFER CACHE !!!

SQL> declare

2 a number;

3 s number := 0;

4 begin

5 for n in 1 .. 14000 loop

6 select cust_credit_limit into a from customers

7 where cust_id=n*2;

8 s := s+a;

9 end loop;

10 dbms_output.put_line('Transaction total = '||s);

11 end;

12 /

Transaction total = 83939500

Elapsed: 00:00:01.17

---- SESSION IO STATS AFTER WORKLOAD

SQL> select a.name, b.value from v$sysstat a, v$mystat b

2 where a.statistic# = b.statistic# and

3 (a.name like '%flash cache read hits'

4 or a.name like 'cell phy%'

5 or a.name like 'physical read tot%'

6 or a.name like 'physical read req%');

NAME VALUE

-- ----------

physical read total IO requests 800

physical read total multi block requests 0

physical read requests optimized 463 physical read requests optimized 463

physical read total bytes optimized 7585792

physical read total bytes 13107200

cell physical IO interconnect bytes 13107200

cell physical IO bytes sent directly to DB node to balanceCPU u 0

cell physical IO bytes saved during optimized file creation 0

cell physical IO bytes saved during optimized RMAN file restore 0

cell physical IO bytes eligible for predicate offload 0

cell physical IO bytes saved by storage index 0

cell physical IO interconnect bytes returned by smart scan 0

cell flash cache read hits 463

---- SESSION IO STATS BEFORE WORKLOAD

SQL> select a.name, b.value from v$sysstat a, v$mystat b

2 where a.statistic# = b.statistic# and

3 (a.name like '%flash cache read hits'

4 or a.name like 'cell phy%'

5 or a.name like 'physical read tot%'

6 or a.name like 'physical read req%');

NAME VALUE

-- ----------

physical read total IO requests 14

physical read total multi block requests 0

physical read requests optimized 12 physical read requests optimized 12

physical read total bytes optimized 196608

physical read total bytes 229376

cell physical IO interconnect bytes 229376

cell physical IO bytes sent directly to DB node to balanceCPU u 0

cell physical IO bytes saved during optimized file creation 0

cell physical IO bytes saved during optimized RMAN file restore 0

cell physical IO bytes eligible for predicate offload 0

cell physical IO bytes saved by storage index 0

cell physical IO interconnect bytes returned by smart scan 0

cell flash cache read hits 12

---- SIMULATE OLTP WORKLOAD

---- FLUSH BUFFER CACHE !!!

SQL> declare

2 a number;

3 s number := 0;

4 begin

5 for n in 1 .. 14000 loop

6 select cust_credit_limit into a from customers

7 where cust_id=n*2;

8 s := s+a;

9 end loop;

10 dbms_output.put_line('Transaction total = '||s);

11 end;

12 /

Transaction total = 83939500

Elapsed: 00:00:00.98

---- SESSION IO STATS AFTER WORKLOAD

SQL> select a.name, b.value from v$sysstat a, v$mystat b

2 where a.statistic# = b.statistic# and

3 (a.name like '%flash cache read hits'

4 or a.name like 'cell phy%'

5 or a.name like 'physical read tot%'

6 or a.name like 'physical read req%');

NAME VALUE

-- ----------

physical read total IO requests 756

physical read total multi block requests 0

physical read requests optimized 733 physical read requests optimized 733

physical read total bytes optimized 12009472

physical read total bytes 12386304

cell physical IO interconnect bytes 12386304

cell physical IO bytes sent directly to DB node to balanceCPU u 0

cell physical IO bytes saved during optimized file creation 0

cell physical IO bytes saved during optimized RMAN file restore 0

cell physical IO bytes eligible for predicate offload 0

cell physical IO bytes saved by storage index 0

cell physical IO interconnect bytes returned by smart scan 0

cell flash cache read hits 733

